Pandas loc/iloc用法详解
"[]"
和属性操作符"."
可以访问 Series 或者 DataFrame 中的数据,但这种方式只适应与少量的数据,为了解决这一问题,Pandas 提供了两种类型的索引方式来实现数据的访问。本节就来讲解一下,如何在 Pandas 中使用 loc 函数和 iloc 函数。两种函数说明如下:
方法名称 | 说明 |
---|---|
.loc[] | 基于标签索引选取数据 |
.iloc[] | 基于整数索引选取数据 |
.loc[]
df.loc[] 只能使用标签索引,不能使用整数索引。当通过标签索引的切片方式来筛选数据时,它的取值前闭后闭,也就是只包括边界值标签(开始和结束)。.loc[] 具有多种访问方法,如下所示:
一个标量标签
标签列表
切片对象
布尔数组
loc[] 接受两个参数,并以
','
分隔。个位置表示行,第二个位置表示列。示例如下:import numpy as np
import pandas as pd
#创建一组数据
data = {'name': ['John', 'Mike', 'Mozla', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jack', 'Alic'],
'age': [20, 32, 29, np.nan, 15, 28, 21, 30, 37, 25],
'gender': [0, 0, 1, 1, 0, 1, 0, 0, 1, 1],
'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}
label = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
df = pd.DataFrame(data, index=label)
print(df)
#对行操作
print(df.loc['a':'d',:]) #等同于df.loc['a':'d']
输出结果:
对列进行操作,示例如下:name age gender isMarried
a John 20.0 0 yes
b Mike 32.0 0 yes
c Mozla 29.0 1 no
d Rose NaN 1 yes
e David 15.0 0 no
f Marry 28.0 1 no
g Wansi 21.0 0 no
h Sidy 30.0 0 yes
i Jack 37.0 1 no
j Alic 25.0 1 no
#从a到d,切记包含d
name age gender isMarried
a John 20.0 0 yes
b Mike 32.0 0 yes
c Mozla 29.0 1 no
d Rose NaN 1 yes
import numpy as np
import pandas as pd
#创建一组数据
data = {'name': ['John', 'Mike', 'Mozla', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jack', 'Alic'],
'age': [20, 32, 29, np.nan, 15, 28, 21, 30, 37, 25],
'gender': [0, 0, 1, 1, 0, 1, 0, 0, 1, 1],
'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}
label = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
df = pd.DataFrame(data, index=label)
print(df.loc[:,'name'])
输出结果:
a John
b Mike
c Mozla
d Rose
e David
f Marry
g Wansi
h Sidy
i Jack
j Alic
Name: name, dtype: object
对行和列同时操作,示例如下:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
print(df.loc[['a','b','f','h'],['A','C']])
输出如下:
A C
a 1.168658 0.008070
b -0.076196 0.455495
f 1.224038 1.234725
h 0.050292 -0.031327
布尔值操作,示例如下:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(4, 4),index = ['a','b','c','d'], columns = ['A', 'B', 'C', 'D'])
#返回一组布尔值
print(df.loc['b']>0)
输出结果:
A True
B True
C False
D True
Name: b, dtype: bool
.iloc[]
df.iloc[] 只能使用整数索引,不能使用标签索引,通过整数索引切片选择数据时,前闭后开(不包含边界结束值)。同 Python 和 NumPy 一样,它们的索引都是从 0 开始。.iloc[] 提供了以下方式来选择数据:
1) 整数索引
2) 整数列表
3) 数值范围
示例如下:
data = {'name': ['John', 'Mike', 'Mozla', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jack', 'Alic'],
'age': [20, 32, 29, np.nan, 15, 28, 21, 30, 37, 25],
'gender': [0, 0, 1, 1, 0, 1, 0, 0, 1, 1],
'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}
label = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
df = pd.DataFrame(data, index=label)
print(df)
print(df.iloc[2:,])
输出结果:
再看一组示例:name age gender isMarried
a John 20.0 0 yes
b Mike 32.0 0 yes
c Mozla 29.0 1 no
d Rose NaN 1 yes
e David 15.0 0 no
f Marry 28.0 1 no
g Wansi 21.0 0 no
h Sidy 30.0 0 yes
i Jack 37.0 1 no
j Alic 25.0 1 no
name Mozla
age 29
gender 1
isMarried no
Name: c, dtype: object
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print df.iloc[[1, 3, 5], [1, 3]]
print df.iloc[1:3, :]
print df.iloc[:,1:3]
输出结果:
B D
1 0.773595 -0.206061
3 -1.740403 -0.464383
5 1.046009 0.606808
A B C D
1 -0.093711 0.773595 0.966408 -0.206061
2 -1.122587 -0.135011 0.546475 -0.551403
B C
0 0.623488 3.328406
1 0.773595 0.966408
2 -0.135011 0.546475
3 -1.740403 -0.869073
4 0.591573 -1.463275
5 1.046009 2.330035
6 -0.266607 0.873971
7 -1.059625 -0.405340