Pandas执行SQL操作
首先加载一个某连锁咖啡厅地址分布的数据集,通过该数据集对本节内容进行讲解。
import pandas as pd
url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx'
coffee_df=pd.read_excel(url)
coffee_df.head()
输出结果如下:
address category id tel
0 北京市东城区南竹竿胡同2号1幢2层30212号银河SOHOC座 娱乐休闲:咖啡厅 1874263549184796345
1 北京市东城区东直门内大街277-31号档口 娱乐休闲:咖啡厅 1461638360847848424
2 北京市东城区王府井东街8号澳门中心L117商场102室 娱乐休闲:咖啡厅 1308505235389562852
3 北京市东城区前门大街108号底商 娱乐休闲:咖啡厅 15442844740539053384
4 北京市东城区和平里西街51号雍和宫壹中心A座负一层 娱乐休闲:咖啡厅 2357391864111641256
SELECT
在 SQL 中,SELECT 查询语句使用,把要查询的每个字段分开,当然您也可以使用*来选择所有的字段。如下所示:SELECT address, category, id, tel FROM tips LIMIT 5;
对于 Pandas 而言,要完成 SELECT 查询,需要把数据集每一列(columns)的名称传递给 DataFrame 对象。如下所示:
coffee_df[['address','category','id','tel']].head()
下面代码是 Pandas 执行 SELECT 查询的完整程序:
import pandas as pd
url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx'
coffee_df=pd.read_excel(url)
#只查看尾3行
coffee_df[['address', 'category', 'id', 'tel']].tail(3)
输出结果如下:
假如您传入的是一个空列表, 那最终结果将输出所有的行索引标签。address category id tel
28912 新疆尔自治区北屯市芳园路69-2-12 娱乐休闲:咖啡厅 7443833746160692626
28913 新疆尔自治区北屯市北屯购物公园7-1-7 娱乐休闲:咖啡厅 15288143245642241877
28914 新疆尔自治区可克达拉市人民西路与育才路交叉口西北50米 娱乐休闲:咖啡厅 17884214706482955
WHERE
SQL 中的条件查询是通过 WHERE 子句完成的。格式如下所示:
SELECT * FROM coffee_df WHERE tel = '';
然而 DataFrame 可以通过多种方式实现条件筛选,最直观的方法是通过布尔索引:
coffee_df[coffee_df['id'] == '1461638360847848424']
完整程序如下:
import pandas as pd
url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx'
coffee_df=pd.read_excel(url)
coffee_df[coffee_df['tel'] == ''].head(5)
输出结果如下:
address category id tel
2 北京市东城区王府井东街8号澳门中心L117商场102室 娱乐休闲:咖啡厅 1308505235389562852
5 北京市东城区崇文门外大街3号崇文新世界百货一期南门一层 娱乐休闲:咖啡厅 3294587167648650139
6 北京市东城区东四北大街265号文化金融大厦1层大堂 娱乐休闲:咖啡厅 3046481700882245722
7 北京市东城区珠市口东大街2号丰泰中心1层 娱乐休闲:咖啡厅 3218554253235914037
9 北京市东城区怡生健身居然大厦店休闲区 娱乐休闲:咖啡厅 3141197020974020427
上面的语句通过布尔运算将 True 或 False 对象传递给 DataFrame 对象,然后返回所有为 True 的行。
GroupBy
在 SQL 语句中,通过 GroupBy 操作可以获取 table 中一组记录的计数。示例如下:
SELECT id, count(*) FROM tips GROUP BY id;
而 Pandas 可通过以下代码实现:
coffe_df.groupby('id').size()
完整的程序如下所示:
import pandas as pd
url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx'
coffee_df=pd.read_excel(url)
print(coffee_df.groupby('id').size())
输出结果:
id
938817537566269 1
1343221331916894 1
2068013370184103 1
2147497429057385 1
4021181356852391 1
..
18443951046631684378 1
18444337559943971606 1
18444494959108924300 1
18445005868173060838 1
18446259420330511125 1
Length: 23240, dtype: int64
LIMIT
在 SQL 中,LIMIT 语句主要起到限制作用,比如查询前 n 行记录:
SELECT * FROM coffee_df LIMIT n;
而在 Pandas 中,您可以通过 head() 来实现(默认前 5 行),示例如下:
import pandas as pd
url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx'
coffee_df=pd.read_excel(url)
coffee_df[['address', 'tel']].head(3)
输出结果:
本节主要通过对比的方式对 SQL 和 Pandas 做了简单讲解,希望对您有所帮助。address tel
0 北京市东城区南竹竿胡同2号1幢2层30212号银河SOHOC座
1 北京市东城区东直门内大街277-31号档口
2 北京市东城区王府井东街8号澳门中心L117商场102室
- 随机文章
- 核心危机(核心危机魔石合成攻略)
- 风儿(风儿轻轻的吹)
- 饿了么红包怎么用(饿了么红包怎么用微信支付)
- 儿童教育文章(儿童教育)
- 光遇花手先祖位置(安卓光遇手花先祖)
- 广州4a广告公司(广州4a广告公司创意总监年薪)
- 抖音卡(抖音卡顿怎么解决)
- xboxones(xboxone手柄怎么配对主机)
- 兵马俑(兵马俑介绍和历史背景)
- 陈武简历
- 帆船比赛(帆船比赛视频)
- 海猫鸣泣之时游戏(海猫鸣泣之时游戏在哪玩)
- 韩国媳妇和小雪(韩国媳妇和小雪的父亲工资是多少)
- 儋州市第二中学(儋州市第二中学录取分数线)
- 冰客(冰客果汁)
- yy魔兽(yy魔兽世界)
- 国外成人游戏(国外成人游戏注册需要visa信用卡)
- 充值卡代理(充值卡代理加盟)
- 拆奶罩
- 郭妮小说(恶魔的法则郭妮小说)
- 杭同(杭同培训中心怎么样)
- 蝙蝠给人类的一封信(蝙蝠给人类的一封信)
- 大松电饭煲(美的大松电饭煲)
- 疯狂填字(疯狂填字5)
- 点对点短信息(点对点短信息费是什么意思)
- 观音普门品(观音普门品念诵全文)
- 河北省大运会(河北省大运会时间)
- 哈利波特官网(哈利波特官网在哪里)
- 骇客神条(骇客神条怎么辨别真假)
- 杜星霖(杜星霖图片)
