什么是外部排序算法
8个月前 (04-27)
上一章介绍了很多排序算法,插入排序、选择排序、归并排序等等,这些算法都属于内部排序算法,即排序的整个过程只是在内存中完成。而当待排序的文件比内存的可使用容量还大时,文件无法一次性放到内存中进行排序,需要借助于外部存储器(例如硬盘、U盘、光盘),这时就需要用到本章介绍的外部排序算法来解决。
外部排序算法由两个阶段构成:
例如,有一个含有 10000 个记录的文件,但是内存的可使用容量仅为 1000 个记录,毫无疑问需要使用外部排序算法,具体分为两步:
如图 1 所示有 10 个初始归并段到一个有序文件,共进行了 4 次归并,每次都由 m 个归并段得到 ⌈m/2⌉ 个归并段,这种归并方式被称为 2-路平衡归并。
对于同一个文件来说,对其进行外部排序时访问外存的次数同归并的次数成正比,即归并操作的次数越多,访问外存的次数就越多。图 1 中使用的是 2-路平衡归并的方式,举一反三,还可以使用 3-路归并、4-路归并甚是 10-路归并的方式,图 2 为 5-路归并的方式:
对比 图 1 和图 2可以看出,对于 k-路平衡归并中 k 值得选择,增加 k 可以减少归并的次数,从而减少外存读写的次数,最终达到提高算法效率的目的。除此之外,一般情况下对于具有 m 个初始归并段进行 k-路平衡归并时,归并的次数为:s=⌊logkm ⌋(其中 s 表示归并次数)。
从公式上可以判断出,想要达到减少归并次数从而提高算法效率的目的,可以从两个角度实现:
外部排序算法由两个阶段构成:
- 按照内存大小,将大文件分成若干长度为 l 的子文件(l 应小于内存的可使用容量),然后将各个子文件依次读入内存,使用适当的内部排序算法对其进行排序(排好序的子文件统称为“归并段”或者“顺段”),将排好序的归并段重新写入外存,为下一个子文件排序腾出内存空间;
对得到的顺段进行并,直得到整个有序的文件为止。
例如,有一个含有 10000 个记录的文件,但是内存的可使用容量仅为 1000 个记录,毫无疑问需要使用外部排序算法,具体分为两步:
将整个文件其等分为 10 个临时文件(每个文件中含有 1000 个记录),然后将这 10 个文件依次进入内存,采取适当的内存排序算法对其中的记录进行排序,将得到的有序文件(初始归并段)移外存。
对得到的 10 个初始归并段进行如图 1 的两两归并,直得到一个完整的有序文件。
注意:此例中采用了将文件进行等分的操作,还有不等分的算法,后面章节会介绍。
图 1 2-路平衡归并
如图 1 所示有 10 个初始归并段到一个有序文件,共进行了 4 次归并,每次都由 m 个归并段得到 ⌈m/2⌉ 个归并段,这种归并方式被称为 2-路平衡归并。
对于外部排序算法来说,影响整体排序效率的因素主要取决于读写外存的次数,即访问外存的次数越多,算法花费的时间就越多,效率就越低。注意:在实际归并的过程中,由于内存容量的限制不能满足同时将 2 个归并段全部完整的读入内存进行归并,只能不断地取 2 个归并段中的每一小部分进行归并,通过不断地读数据和向外存写数据,直 2 个归并段完成归并变为 1 个大的有序文件。
计算机中处理数据的为中央处理器(CPU),如若需要访问外存中的数据,只能通过将数据从外存导入内存,然后从内存中获取。同时由于内存读写速度快,外存读写速度慢的差异,更加影响了外部排序的效率。
图 2 5-路平衡归并
对比 图 1 和图 2可以看出,对于 k-路平衡归并中 k 值得选择,增加 k 可以减少归并的次数,从而减少外存读写的次数,最终达到提高算法效率的目的。除此之外,一般情况下对于具有 m 个初始归并段进行 k-路平衡归并时,归并的次数为:s=⌊logkm ⌋(其中 s 表示归并次数)。
从公式上可以判断出,想要达到减少归并次数从而提高算法效率的目的,可以从两个角度实现:
增加 k-路平衡归并中的 k 值;
尽量减少初始归并段的数量 m,即增加每个归并段的容量;
其增加 k 值的想法引申出了一种外部排序算法:多路平衡归并算法;增加数量 m 的想法引申出了另一种外部排序算法:置换-选择排序算法。两种外部排序算在后序章节中详细介绍。