二叉树的链式存储结构(C语言详解)

7个月前 (04-27)
上一节讲了二叉树的顺序存储,通过学习你会发现,其实二叉树并不适用数组存储,因为并不是每个二叉树都是完全二叉树,普通二叉树使用顺序表存储或多或多会存在空间浪费的现象。

本节我们学习二叉树的链式存储结构。
普通二叉树示意图

图 1 普通二叉树示意图


如图 1 所示,此为一棵普通的二叉树,若将其采用链式存储,则只需从树的根节点开始,将各个节点及其左右孩子使用链表存储即可。因此,图 1 对应的链式存储结构如图 2 所示:


二叉树链式存储结构示意图

图 2 二叉树链式存储结构示意图


由图 2 可知,采用链式存储二叉树时,其节点结构由 3 部分构成(如图 3 所示):

  • 指向左孩子节点的指针(Lchild);

  • 节点存储的数据(data);

  • 指向右孩子节点的指针(Rchild);

二叉树节点结构

图 3 二叉树节点结构


表示该节点结构的 C 语言代码为:

typedef struct BiTNode{

TElemType data;//数据域

struct BiTNode *lchild,*rchild;//左右孩子指针

struct BiTNode *parent;

}BiTNode,*BiTree;


图 2 中的链式存储结构对应的 C 语言代码为:

#include <stdio.h>

#include <stdlib.h>

#define TElemType int

typedef struct BiTNode{

    TElemType data;//数据域

    struct BiTNode *lchild,*rchild;//左右孩子指针

}BiTNode,*BiTree;

void CreateBiTree(BiTree *T){

    *T=(BiTNode*)malloc(sizeof(BiTNode));

    (*T)->data=1;

    (*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode));

    (*T)->lchild->data=2;

    (*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode));

    (*T)->rchild->data=3;

    (*T)->rchild->lchild=NULL;

    (*T)->rchild->rchild=NULL;

    (*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));

    (*T)->lchild->lchild->data=4;

    (*T)->lchild->rchild=NULL;

    (*T)->lchild->lchild->lchild=NULL;

    (*T)->lchild->lchild->rchild=NULL;

}

int main() {

    BiTree Tree;

    CreateBiTree(&Tree);

    printf("%d",Tree->lchild->lchild->data);

    return 0;

}

程序输出结果:

4

其实,二叉树的链式存储结构远不止图 2 所示的这一种。例如,在某些实际场景中,可能会做 "查找某节点的父节点" 的操作,这时可以在节点结构中再添加一个指针域,用于各个节点指向其父亲节点,如图 4 所示:


自定义二叉树的链式存储结构

图 4 自定义二叉树的链式存储结构

这样的链表结构,通常称为三叉链表。

利用图 4 所示的三叉链表,我们可以很轻松地找到各节点的父节点。因此,在解决实际问题时,用适的链表结构存储二叉树,可以起到事半功倍的效果。