secx等于什么图像(Secx 等于什么)

1年前 (2024-04-23)

secx等于什么图像(Secx 等于什么)

本文的主要内容介绍了基本函数的单调性、函数单调性的性质以及度量函数单调性和单调区间的方法。

。单调定义

也可以调用function的单函数进行增减。当函数f(x)的指数f(x)在其定义的区间内增加(或减少)时,函数值f(x)也增加(或减少),称为区间domolecule。在定义域的D部分,当指数变量减少时,称为单调递增,反之称为单调递减函数。增函数的形象在上升,减函数的形象在下降。单调递增函数和单调递减函数的个数统称为单调函数。不是所有的函数都是单调函数。如果函数f(x)在某个区间d上是单调的,那么这个区间d就叫做函数的单音节部分。函数y=c

对于单调函数,它可能只有一个或多个单调增长,或者只有一个或多个单调减区间可能有一个或多个单调增长区间和单调减区间。。单调和基本功能的单调间隔

1.常数函数Y=C不是单调函数,没有单调区间。2.A函数y=ax b(a0)定义域R为单调函数,单调位置依赖于A的正负,当A 0为单调递增函数时,单调递增区间为(-,);当a 0是酉约化函数时,酉少数段为(-,).3。二次函数Y=AX ^ 2 bx c (a 0)定义r的定义域,有单调的,也有单调的区间,结束于a的正负对称x0=-b/2a .当a0时,区间(-,-b/2a)为单调递减区间,(-b/2a,)为单调递增区间;当a 0,区间(-,-b,-b/2a)是单调增长上的单调约化区间,(-b/2a,)4 .幂函数y=x a,根据a的值讨论其单调性.当A=2,y=x ^ 2是二次函数的一种情况,单调符二次函数的性质;当a=3,y=x 3是整实数中的单模增加时,酉增加区间为(-,)。5.指数函数y=a x (a 0且a1)定义了单调依赖于A的值的定义域R,当A为1时,指数函数单调;若为0.1,则为单调递减6 .对数函数y=loga (x) (a 0且a1)定义域,因为定义域为(0,)且单调性依赖于A的值,当A 1在定义域内时,为单调递增函数;当是0时。1,是定义域上的单调减函数7 .反比例函数Y=k/x (k 0)定义域要求x 0,一论依赖于k的正负,当k0时,函数个数与在(-,0),(0,)中相同;当k.0时,函数为(-,0),(0,)以增加函数8 .三角函数型,故为弦函数y=sinx,余弦函数y=CoSX,正规截函数y=TANX,余数函数y=CTGX,正截函数y=secx,余数函数Y=CSCX,orthless函数Versinx=1-CoSX,Yuacha函数COVERSINX=1-sinx,半引力函数haversinx=(1t的单调性

op four common triangular functions is as follows:

For y = sinx, the increase interval is [2kπ-π / 2, 2k + π / 2], and the reduction is [2kπ + π / 2, 2 kπ + 3π / 2].

For Y = CoSX, the increase interval is [2kπ-π, 2Kπ], and the reduction is [2kπ, 2kπ + π].

For Y = TANX, the increase interval is [kπ-π / 2, kπ + π / 2].

For Y = CTGX, the reduction is [kπ, kπ + π], and the above k∈z is.

※ function monotonic nature1.F (x) with f (x) + c (c is arbitrary constant) has the same monotoni;2.F (x) and g (x) = C * f (x) have the same monotonity in C> 0,当c时 <0, there is an opposite monotoni;3. When f (x), g (x) is a function of increasing, if both are constant, f (x) × g (x) is a function; if both are constant than zero, Reduce the number of functions;4. When f (x), g (x) is reduced, if both is constant, f (x) × g (x) is auxiliary function; if both are constant than zero, Increased function; 5. The sum of the two increasing functions is still a function, such as y = x ^ 2 + 2 ^ x; increased function minus the reduction of the weight to increase the function, such as Y = x ^ 2-2 ^ (- x);6. The sum of the two reductions is still auxiliary function; the reduction of the function is subtracted to increase the increase in the weight; the function value is incremented (decrease) the reciprocal of the function in the interval.7. In the defined domain of the composite function y = f [g (x)], U = g (x), y = f [x)] monotonized by u = g (x) and y = f (x) Monotone is determined, and"Same increase"Judgment law.※. Judgment of function monotonicityDefinition

Depending on the definition of the function monotonicity, the step of judging the function is:

1 On the interval D, the X1, X2 is used, and X1

2 Differential f (x2) -f (x1);

3 The results of f (x2) -f (x1) are deformable (usually formula, due to fractal decomposition, reason, generalization, utilization formula, etc.);

4 Determine the positive and negative of the symbol F (x2) -f (x1);

5 Next, if f (x2) -f (x1)> 0,这是一个增加的函数,间隔d是一个越来越长的部分;如果f(x2)-f(x1) <0, the number of functions, the interval D is Decontices.

2. Guidelines

If the function y = f (x) can be guided within the interval D, if the X∈D is constant, F '(x)> 0,函数y = f(x)在间隔d中单调;如果x∈d,f'(x) <0, the function y = f (x) is monotonous in the interval D.

对于上述两种方法,定义方法通常主要用于判断或证明衍生不仅可以确定功能的单调性,而且还可以确定该功能的单调间隔。衍生物是解决该功能功能的重要途径。