勾股定理的发展史
2年前 (2024-04-21)
勾股定理的发展史赤井秀一~ 勾股定理 勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结的纽带之一。
在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
定义在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。
如果设直角三角形的两条直角边长度分别是a和  b,斜边长度是c,那么可以用数学语言表达:a²+b²=c²勾股定理是余弦定理中的一个特例 赵爽弦图《九章算术》中,赵爽描述此图:“勾股各自乘,并之为玄实。
开方除之,即玄。
加菲尔德证法加菲尔德在证出此结论5年后,成为美国第20任总统,所以人们又称其为“总统证法,  该证明为加菲尔德证法的变式。
如果将大正方形边长为c的小正方形沿对角线切开,则回到了加菲尔德证 法。
相反,若将上图中两个梯形拼在一起,就变为了此证明方法。
大正方形的面积等于中间正方形的面积加上四个三角形的面积, 即2ab+c²=a²+b²+2ab c²=a²+b² 青朱出入图青朱出入图,是东汉末年数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,特色鲜明、通俗易懂。
刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,成弦方之幂。
开方除之,即弦也。
”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。
将朱方、青方两个正方形对齐底边排列,再以盈补虚,分割线内不动,线外则“各从其类”,以成弦的正方形即弦方,弦方开方即为弦长。
欧几里得证法在欧几里得的《几何原本》一书中给出勾股定理的以下证明。
设△ABC为一直角三角形,其中A为直角。
从A点划一直线对边,使其垂直于对边。
延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等从A点划一直线对边,使其垂直于对边。
延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。
 欧几里得证法设△ABC为一直角三角形,其直角为∠CAB。
其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB㷻,BD㶼,所以△ABD≌△FBC。
因为A与K和L在同一直线上,所以四边形BDLKϒ△ABD。
因为C、A和G在同一直线上,所以正方形BAGFϒ△FBC。
。
。
定理用途已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。
利用勾股定理求线段长度这是勾股定理的最基本运用。
[4]
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结的纽带之一。
在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
定义在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。
如果设直角三角形的两条直角边长度分别是a和  b,斜边长度是c,那么可以用数学语言表达:a²+b²=c²勾股定理是余弦定理中的一个特例 赵爽弦图《九章算术》中,赵爽描述此图:“勾股各自乘,并之为玄实。
开方除之,即玄。
加菲尔德证法加菲尔德在证出此结论5年后,成为美国第20任总统,所以人们又称其为“总统证法,  该证明为加菲尔德证法的变式。
如果将大正方形边长为c的小正方形沿对角线切开,则回到了加菲尔德证 法。
相反,若将上图中两个梯形拼在一起,就变为了此证明方法。
大正方形的面积等于中间正方形的面积加上四个三角形的面积, 即2ab+c²=a²+b²+2ab c²=a²+b² 青朱出入图青朱出入图,是东汉末年数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,特色鲜明、通俗易懂。
刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,成弦方之幂。
开方除之,即弦也。
”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。
将朱方、青方两个正方形对齐底边排列,再以盈补虚,分割线内不动,线外则“各从其类”,以成弦的正方形即弦方,弦方开方即为弦长。
欧几里得证法在欧几里得的《几何原本》一书中给出勾股定理的以下证明。
设△ABC为一直角三角形,其中A为直角。
从A点划一直线对边,使其垂直于对边。
延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等从A点划一直线对边,使其垂直于对边。
延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。
 欧几里得证法设△ABC为一直角三角形,其直角为∠CAB。
其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB㷻,BD㶼,所以△ABD≌△FBC。
因为A与K和L在同一直线上,所以四边形BDLKϒ△ABD。
因为C、A和G在同一直线上,所以正方形BAGFϒ△FBC。
。
。
定理用途已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。
利用勾股定理求线段长度这是勾股定理的最基本运用。
[4]
- 随机文章
- 核心危机(核心危机魔石合成攻略)
- 风儿(风儿轻轻的吹)
- 儿童教育文章(儿童教育)
- 光遇花手先祖位置(安卓光遇手花先祖)
- 广州4a广告公司(广州4a广告公司创意总监年薪)
- 抖音卡(抖音卡顿怎么解决)
- xboxones(xboxone手柄怎么配对主机)
- 兵马俑(兵马俑介绍和历史背景)
- 陈武简历
- 帆船比赛(帆船比赛视频)
- 韩国媳妇和小雪(韩国媳妇和小雪的父亲工资是多少)
- 儋州市第二中学(儋州市第二中学录取分数线)
- 鬼泣5攻略(鬼泣5攻略第三关怎么跳)
- 地球日主题(2020年世界地球日主题)
- 和柳亚子(和柳亚子先生于田)
- 冰客(冰客果汁)
- yy魔兽(yy魔兽世界)
- 国外成人游戏(国外成人游戏注册需要visa信用卡)
- 充值卡代理(充值卡代理加盟)
- 拆奶罩
- 郭妮小说(恶魔的法则郭妮小说)
- 东天目山(东天目山景区)
- 蝙蝠给人类的一封信(蝙蝠给人类的一封信)
- 大松电饭煲(美的大松电饭煲)
- 服饰加盟(服饰加盟店招商)
- 疯狂填字(疯狂填字5)
- 点对点短信息(点对点短信息费是什么意思)
- 观音普门品(观音普门品念诵全文)
- 河北省大运会(河北省大运会时间)
- 哈利波特官网(哈利波特官网在哪里)
